Ni Yao 1†Xiaoyu Wang 1†Shuqi Ma 1†Xingda Song 2[ ... ]Limin Tong 1
Author Affiliations
Abstract
1 Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311121, China
2 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
3 Shandong Institute of Advanced Technology, Jinan 250100, China
4 Tencent Robotics X Lab, Tencent Technology (Shenzhen) Co., Ltd, Shenzhen 518054, China
5 e-mail: wfang08@zju.edu.cn
6 e-mail: zhang_lei@zju.edu.cn
The ability to sense heat and touch is essential for healthcare, robotics, and human–machine interfaces. By taking advantage of the engineerable waveguiding properties, we design and fabricate a flexible optical microfiber sensor for simultaneous temperature and pressure measurement based on theoretical calculation. The sensor exhibits a high temperature sensitivity of 1.2 nm/°C by measuring the shift of a high-order mode cutoff wavelength in the short-wavelength range. In the case of pressure sensing, the sensor shows a sensitivity of 4.5% per kilopascal with a fast temporal frequency response of 1000 Hz owing to the strong evanescent wave guided outside the microfiber. The cross talk is negligible because the temperature and pressure signals are measured at different wavelengths based on different mechanisms. The properties of fast temporal response, high temperature, and pressure sensitivity enable the sensor for real-time skin temperature and wrist pulse measurements, which is critical to the accurate analysis of pulse waveforms. We believe the sensor will have great potential in wearable optical devices ranging from healthcare to humanoid robots.
Photonics Research
2022, 10(9): 2040
Author Affiliations
Abstract
1 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
3 e-mail: phytong@zju.edu.cn
We theoretically investigate dark dimer mode excitation and strong coupling with a nanorod dipole. Efficient excitation of a dark mode in a gold (Au) nanorod dimer using an electric dipole can be achieved by an optimal overlap between the dipole moment and dark modal field. By replacing the dipole emitter with an Au nanorod, a plane wave excited dipole mode in the nanorod can be effectively coupled to the dark dimer mode through near-field interaction. At a 10-nm separation of the nanorod and the dimer, plasmonic interaction between dipole-dark modes enters the strong coupling regime with a Rabi-like splitting of 219.2 meV, which is further evidenced by the anticrossing feature and Rabi-like oscillation of electromagnetic energy of the coupled modes. Our results propose an efficient approach to far-field activating dark modes in coupled nanorod dimers and exchanging plasmonic excitations at nanoscale, which may open new opportunities for nanoplasmonic applications such as nanolasers or nanosensors.
Plasmonics Coupled resonators Surface plasmons 
Photonics Research
2018, 6(9): 09000887

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!